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A B S T R A C T   

Background: Recently, we have implemented a high-speed brain-computer interface (BCI) system with a large 
instruction set using the concurrent P300 and steady-state visual evoked potential (SSVEP) features (also known 
as hybrid features). However, it remains unclear how to select inter-stimulus interval (ISI) for the proposed BCI 
system to balance the encoding efficiency and decoding performance. 
New method: This study developed a 6 * 9 hybrid P300-SSVEP BCI system and investigated a series of ISIs ranged 
from − 175–0 ms with a step of 25 ms. The influence of ISI on the hybrid features was analyzed from several 
aspects, including the amplitude of the induced features, classification accuracy, information transfer rate (ITR). 
Twelve naive subjects were recruited for the experiment. 
Results: The results showed the ISI factor had a significant impact on the hybrid features. Specifically, as the 
values of ISI decreased, the amplitudes of the induced features and accuracies decreased gradually, while the 
ITRs increased rapidly. It’s achieved the highest ITR of 158.50 bits/min when ISI equal to − 175 ms. 
Comparison with Existing Method: The optimal ISI in this study achieved superior performance in comparison with 
the one we used in the previous study. 
Conclusions: The ISI can exert an important influence on the P300-SSVEP BCI system and its optimal value is −
175 ms in this study, which is significant for developing the high-speed BCI system with larger instruction sets in 
the future.   

1. Introduction 

Brain-computer Interface (BCI) is a system by detecting central 
nervous system activities and transforming it into manual output, which 
can make the brain directly communicate with the external environment 
(Wolpaw et al., 2000; Wolpaw et al., 2002; Feng et al., 2018; Wang et al., 
2020). The visual BCI (v-BCI) system is an application of visual pathway 
in response to external stimuli that has the advantages of stable evoked 
features and fast speed (Gao et al., 2014; Xu et al., 2021). The typical 
features, such as P300 (Townsend and Platsko, 2016; Xiao et al., 2019), 
steady-state visual evoked potential (SSVEP) (Wang et al., 2006; Wang 

et al., 2008), and their hybrid features, have become increasingly pop
ular paradigms (Panicker et al., 2011; Wang et al., 2015; Xu et al., 2014). 

The large instruction set with high-speed has always been one of the 
important development directions for BCI community. Researchers have 
made a lot of efforts from two aspects, namely encoding strategy and 
decoding algorithm (Xu et al., 2014; Xu et al., 2021). For encoding 
strategy, Jin et al. designed an adaptive P300 BCI with 84 characters (Jin 
et al., 2011). Townsend et al. realized a 72 characters BCI system by 
designing a novel P300 checkerboard paradigm (CBP) (Townsend et al., 
2010). Xu et al. developed a novel 36 commands BCI speller with in
formation transfer rate (ITR) of 63.33 bits/min by miniature 
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event-related potentials (ERPs), which can significantly reduce visual 
fatigue (Xu et al., 2018). Chen et al. implemented a 160 commands BCI 
system with average ITR of 78.84 bits/min using multiple frequency 
sequential coding (MFSC) method (Chen et al., 2021). For decoding 
algorithm, Chen et al. proposed the filter-bank method and extended 
CCA method successively to decode SSVEP BCI system with 40 com
mands (Chen et al., 2015a; Chen et al., 2015b). Nakanishi et al. proposed 
task-related component analysis (TRCA) that is the most powerful al
gorithm for SSVEP-based BCI (Nakanishi et al., 2017). Chen et al. 
developed a SSVEP-based BCI system used the dynamic window strategy 
with average online ITR of 164.72 bits/min, whereas the number of 
instruction was only 40 commands (Chen et al., 2021). The large in
struction set BCI with high-speed had not been developed, mainly due to 
mutual restriction between the number of instructions and the 
consuming time of outputting a command. Its realization required 
highly sophisticated encoding design and advanced decoding algorithm. 
Recently, we have proposed the concurrent P300 and SSVEP features 
(also known as hybrid features in the context) and implemented an over 
100 commands BCI system covering full keyboard keys with a maximum 
ITR of 238.41 bits/min (Xu et al., 2020). Nevertheless, the proposed BCI 
system has room in encoding strategy for further improvement to better 
meet the actual application. 

The encoding performance of BCI was determined by encoding ef
ficiency, which is mainly affected by three parameters: stimulus dura
tion (SD), inter-stimulus interval (ISI), and stimulus onset asynchrony 
(SOA), respectively (Allison and Pineda, 2006; Polprasert et al., 2013). 
Actually, SOA is equal to SD plus ISI according to their definition. In 
order to quantify the relative relationship between ISI and SD, we 
defined the ratio of the opposite value of ISI to SD that was called as 
ROIS. It’s worth noting that there is an overlap between the data cor
responding to adjacent trials when ISI is negative value (i.e. ROIS is 
positive value). And the larger opposite value of ISI (or larger ROIS 
value), the more data overlap. From a view of pattern recognition, if the 
degree of overlap is increased, the encoding time would be shorter and 
the system response speed would be faster, but it would be brought 
greater difficulties for feature extraction and recognition. The exact 
impact on BCI system performance of ITR is not clear yet. If the degree of 
overlap is decreased, feature recognition will become relative easier, but 
the encoding time will be increased so that system performance of ITR 
will be also changed. On the other hand, based on the study of ERP 
(Luck, 2014; Martens et al., 2009), the changes of ISI or ROIS may have 
an impact on the amplitudes of the induced features. For the proposed 
hybrid features, besides the frequency-phase-modulated SSVEP and 
time-modulated P300 features as contained in the traditional hybrid 
P300 and SSVEP features, there are two new distinct EEG features, i.e. 
time-modulated SSVEP and frequency-phase-modulated P300 (Xu et al., 
2020; Wang et al., 2016). More importantly, the effects of the encoding 
parameters on the hybrid features and system performance are not clear 
yet, which is one of the key issues to be explored urgently to enhance the 
performance of high-speed BCI with a large instruction set. 

This study aimed to explore the effects of ISI on the concurrent P300 
and SSVEP features and the BCI system performance. We designed a 6 * 
9 hybrid P300-SSVEP BCI system, whose SD was a fixed value of 200 ms 
and ISI was a variable value ranged from 0 ms to − 175 ms with a step of 
− 25 ms. Then the influence of ISI on P300 and SSVEP features was 
studied separately from the several aspects of the amplitude of the 
induced features, classification accuracy, ITR, and so on. The results 
showed that the hybrid features achieved the best performance 
compared to traditional SSVEP or SSVEP+P300 features. And the ISI 
have a significant impact on hybrid features. Finally, it’s achieved the 
highest ITR of 158.50 bits/min when ISI equal to − 175 ms, which is the 
optimal and recommended setting. For the same BCI paradigm design, 
the ITRs in this study have an impressive improvement using optimal 
parameter setting, which provides an effective way for developing high- 
speed BCI with larger instruction sets and broaden application 
prospects. 

2. Materials and methods 

2.1. Subjects 

Twelve healthy volunteers (five females and seven males) aged be
tween 20 and 21 with normal or corrected vision took part in the 
experiment. According to the Helsinki Declaration, all subjects were 
fully aware of all procedures, understood all possible consequences of 
the study, and signed an informed consent form. The study was 
approved by the Review Committee of Tianjin University. Before 
participating in the experiment, all the subjects had not experienced the 
relevant type of experimental training. 

2.2. Hybrid P300-SSVEP BCI speller paradigm 

The stimulation interface was presented on a 27-inch liquid crystal 
display (LCD) with a resolution of 1920 * 1080 pixels and a refresh rate 
of 120 Hz. A 6 * 9 matrix showed 54 black characters on a white 
background, as shown in the Fig. 1a. They were further divided into 6 
independent small 3 * 3 character matrices, which were also named as 
P300 sub-speller. This is because that the 9 characters in the sub-speller 
were encoded by time division multiple access (TDMA) and were indi
vidually highlighted by a gray square in a pseudo-random and ergodic 
sequence. Each stimulation square subtended 3.33 degrees of visual 
angle in the vertical direction and 3.33 degrees in the horizontal di
rection. The stimulus duration for each character was 200 ms. 

The 6 sub-spellers were activated simultaneously. A complete 
traversal flashing of 54 characters is called as a round. The hybrid 
encoding scheme was used in this study. For sub-spellers, frequency 
division multiple access (FDMA) was adopted. In order to distinguish the 
frequency band of SSVEP and P300, the flicking frequencies were 
greater than 10 Hz and ranged from 11 Hz to 16 Hz with 1 Hz interval. 
And the initial phase of the six sub-spellers was also different. According 
to (Wang et al., 2016), SSVEPs with any stimulation phase for 40 fre
quencies (ranging from 8 Hz to 15.8 Hz with step of 0.2 Hz), which 
covered all the stimulation frequencies of this experiment, can be 
simulated by a simulation method. Therefore, the initial phases were 
optimized by a search of phase interval (from 0 to 2π with a step of 
0.05π) of the JFPM method on a public SSVEP dataset using the simu
lation method with a stimulus duration of 200 ms, resulting in a phase 
interval of 0.35π between two neighboring frequencies (see Fig. 1b). For 
more details, please refer to (Wang et al., 2016). The flicker stimulation 
method uses the sine wave stimulation method, which presents the 
stimulation by changing the gray-scale of the character flicker back
ground. Thus, when the target they focused on was triggered, P300 and 
SSVEP were induced simultaneously. 

It’s worth noting that ISI was varied to explore the impact on BCI 
performance. In this study, the value of ISI ranged from − 175–0 ms, 
with an interval of 25 ms. To better evaluate the impact of ISI changes 
on BCI performance, we defined the radio of the absolute value of ISI to 
SD as evaluation parameter, which was written as ROIS. Thus, the ROIS 
values were 87.5%, 75%, 62.5%, 50%, 37.5%, 25%, 12.5%, and 0%, 
respectively. Taking ROIS equaled to 50% as an example, the overlap 
time of adjacent stimuli was 100 ms (i.e. ISI=− 100 ms). That is to say 
100 ms after the last stimulus started flashing, the next stimulus would 
start flashing. At most two stimuli were flashing at any one time, as 
shown in Fig. 1c. Similarly, for Fig. 1d, when ROIS was equal to 75%, 
that was ISI= − 150 ms, at most four stimuli were flashing at a certain 
moment. The stimulation program was developed under MATLAB 
(MathWorks, Inc.) using the Psychophysics Toolbox Version3. 

2.3. BCI Experiment 

The subjects were asked to sit calmly in front of the screen with their 
eyes 60 cm away from the center of the screen. The specific experi
mental process is shown in the Fig. 2. Taking ROIS equaled to 50% (i.e. 
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ISI=− 100 ms) as an example, the subjects pressed the space key when 
they were ready. First of all, a prompt interface were presented on the 
screen and lasted for 0.5 s. The specified character, which indicated by 
an underneath read triangle with 1.85 degrees of visual angle for 0.5 s 
on the prompt interface, was stared by the subjects and also called as the 
target character. And then the stimulation phase would be began after 

that. The visual stimulus ran for five successive rounds for all the 
characters. Each character flashed for a period of time was called a trial. 
So, each round consisted of nine trials, of which one was target stimulus, 
and the other eight were non-target stimuli. The nine characters of each 
sub-speller were numbered 1–9 from left to right and top to bottom. The 
sequence of numbers indicated the flashing sequence of the characters. 

Fig. 1. Illustration of the stimulation in the hybrid BCI speller. (a) Distribution of 54 characters on the screen was divided into 6 sub-spellers by the red line. (b) The 
selected frequency and initial phase of stimulation squares were displayed for each sub-speller. (c, d) Stimulation process for sub-speller 1, ISI = − 100 ms, − 150 ms. 
Notably, the consuming time of one round was different for ISI= − 100 ms and ISI= − 150 ms, which was 1000 ms and 600 ms, respectively. The red dotted lines with 
arrows indicate specific time points. 

Fig. 2. Experimental flow diagram. The subjects pressed the space key to start the experiment. First the prompt interface appeared for 0.5 s, the stimulation interface 
began flickering for 5 rounds. After that, the prompt for the next target character would begin. 
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During the stimulation phase, the subjects were asked to focus on the 
target character indicated beforehand and count the numbers of times 
the target was highlighted. All subjects were required to spell all 54 
characters for each ISI. In order to reduce the visual fatigue of the 
subjects, 54 characters under each ISI were randomly and uniformly 
divided into three sessions. Under each session, the subjects had to spell 
18 characters, which were evenly distributed among the six sub-spellers. 
In the course of the experiment, for each subject, the order of ISI se
lection was random, and the subjects had to complete 8 groups of ISI 
experiments. After completing the experiment of each two groups of ISI, 
the subjects would take a short rest. The whole experiment took about 
43 min. 

2.4. EEG recording 

The EEG data of 64 electrodes were collected by Neuroscan Syn
amps2 system according to the international 10–20 system. The refer
ence electrode was placed on the left mastoid and the ground electrode 
was placed on the prefrontal lobe. The signals collected by 1000 Hz were 
stored on the computer after 0.1–200 Hz bandpass filtering and 50 Hz 
notch filtering. 

2.5. EEG processing and feature extraction 

As mentioned above, the concurrent P300 and SSVEP features (i.e. 
hybrid features) are composed of four features, namely frequency-phase- 
modulated SSVEP and time-modulated P300 features as contained in the 
traditional hybrid P300 and SSVEP features, and the newly proposed 
time-modulated SSVEP and frequency-phase-modulated P300 features. 
According to previous studies (Panicker et al., 2011; Chen et al., 2015b; 
Xu et al., 2020; Wang et al., 2016), P300 features (i.e. time-modulated 
and frequency-phase-modulated) are mainly concentrated in the low 
frequency band (≤ 10Hz), while SSVEP features (i.e. 
frequency-phase-modulated and time-modulated) are distributed in a 
wider frequency band, and the starting position of the band is deter
mined by the stimulus frequency. Therefore, in this study, stimulation 
frequencies greater than 10 Hz were adopted so that P300 and SSVEP 
features could be separated by filters with different bandpass to better 
analysis. 

The signal processing included two parts, i.e. pre-processing and 
pattern recognition, as shown in Fig. 3. In the pre-processing stage, it 
mainly includes data filtering, data segmentation, and down-sampling. 
In the recognition process of the target character, there were two 
sequential steps: (1) recognizing the sub-speller containing the target 
character and then (2) recognizing the target character within the 
identified sub-speller. It’s worth noting that P300 could only be used to 
recognize the target character within the identified sub-speller, while 
SSVEP and the hybrid features could be used to recognize both the sub- 
speller containing the target character and the target character within 
the identified sub-speller. Thus, combined with above features analysis, 
there were three methods to recognize the target character. The first 
method was to use only a single SSVEP features. Notably, only when 
both sub-speller and the target character within the sub-speller are 
recognized correctly, the output target class is correct, as shown in 
Fig. 3, otherwise it is incorrect. The second method was to use SSVEP 
features for sub-speller recognition and P300 features for the target 
character within the identified sub-speller recognition. In other words, 
SSVEP and P300 features were combined in a serial manner that was 

abbreviated as SSVEP+P300. The third method was to use the hybrid 
features for the target character recognition. The corresponding specific 
data processing flow of P300, SSVEP, and hybrid features are introduced 
as follows, respectively. 

For P300, 6 EEG channels (Fz, Cz, Pz, PO7, PO8, Oz) were down- 
sampled to 200 Hz and filtered by the 1–10 Hz bandpass with Butter
worth filters. Then the sampling rate was down to 20 Hz and the P300 
feature was extracted from 50 to 800 ms. 

For SSVEP, 9 EEG channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, 
O2) were first down-sampled to 250 Hz and filtered by a filter bank 
(including seven Chebyshev type I filters) into [X Hz,72 Hz] (X = 9, 17, 
25, 33, 41, 49 and 57). SSVEP features were extracted from 140 to 
340 ms. 

For the hybrid features, 11 EEG channels (Fz, Cz, Pz, PO7, PO3, POZ, 
PO4, PO8, O1, Oz, and O2) were first down-sample to 250 Hz and 
filtered by a filter bank (including seven Chebyshev type I filters) into [X 
Hz, 72 Hz] (X = 2, 9, 17, 25, 33, 41, 49 and 57). The principle of channel 
selection is based on the feature distribution in brain and fuses more 
effective features. The hybrid features were extracted from 50 to 450 ms 
according to our previous study (Xu et al., 2020). 

2.6. Step-wise Linear Discriminant Analysis (SWLDA) 

SWLDA developed on the basis of Fisher linear discriminant (FLD) 
analysis is a classic and powerful algorithm for P300, which mainly 
reduces the space occupied by features by gradually screening and 
retaining significant features (Krusienski et al., 2006; Xiao et al., 2021). 
SWLDA is implemented through forward and backward step-by-step 
analysis. For the input features, the target label category is predicted 
by using the ordinary least square method to weighted (equivalent to 
FLD). Since the discriminant function does not contain the initial fea
tures, the most statistically significant input features used to predict the 
target label are added to the discriminant function. When a new feature 
is entered into the discriminant function, a backward step-by-step 
analysis is performed to remove the least important feature. The 
above process is repeated until the discriminant function includes a 
predetermined number of features or until no new features meet the 
conditions for adding or removing. 

2.7. Ensemble task-related component analysis (TRCA) 

The Ensemble TRCA has been proved the most powerful recognition 
algorithm for SSVEP classification (Nakanishi et al., 2017; Xing et al., 
2018). TRCA is an algorithm that finds projection matrix W =

[ωj1 ωj2… ωNC ]
T to maximize the covariance of task-related compo

nents between trial (Tanaka et al., 2013). The h-th trial of EEG signal is 
x(h)(t). The periods of x(h)(t) are fixed as t ∈ [th, th + T], where th and T 
refer to the beginning and the duration of the h-th trial, respectively. The 
covariance between the h1-th and h2-th trials is as follow: 

Ch1h2 =
∑NC

j1 ,j2=1
ωj1ωj2Cov(x

(h1)
j1 (t), x(h2)

j2 (t)) (1)  

Where NC is the number of the channels and Cov(a, b) refers to the 
covariance between a and b. j indicates the indexes of the channels. All 
possible combinations of trials are summed as: 

Fig. 3. The total flow diagram of signal processing.  
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∑Nt
h1, h2 = 1
h1 ∕= h2

Ch1h2 =
∑Nt

h1, h2 = 1
h1 ∕= h2

∑NC
j1 ,j2=1

ωj1ωj2Cov
(
x(h1)
j1 (t), x(h2)

j2 (t)
)

= ωTSω
(2)  

Where Nt is the number of training trials. Here, the matrix S =
(
Sj1 j2

)
,

1 ≤ j1, j2 ≤ NC is defined as: 

Sj1 j2 =
∑Nt

h1h2=1

h1∕=h2

Cov(x(h1)
j1 (t), x(h2)

j2 (t)) (3) 

Considering obtaining a finite result, the following restriction should 
be met: 

Var(y(t) ) =
∑Nc

j1,j2=1
ωj1ωj2Cov

(
xj1 (t), xj2 (t)

)
= WTQW = 1 (4) 

Then, the optimization problem can be transformed as: 

Ŵ = argmax
W

(WTSW
/
WTQW) (5) 

The optimal spatial filter is found as the eigenvector of the matrix 
Q− 1S by Lagrange multiplier method. Nf spatial filters corresponding to 
Nf visual stimulus are integrated as follows: 

Wm =
[
Wm

1 , Wm
2 , ……, Wm

Nf

]
(6)  

Where m is the index of sub-bands designed by filter bank (m ∈ [1,Nb]), 
Nb is the number of sub-bands. The correlation coefficient between the 

projection of test data X(m) and averaged individual template X(m) is 
calculated as: 

r(m)n = ρ
((
X(m) )TW(m),

(
Xn

(m) )TW(m)
)

(7)  

Where ρ(a, b) indicates the Pearson’s correlation analysis between a and 
b, n indicates the index of sub-spellers (nϵ[1,6]). Then correlation co
efficients in different sub-bands are weighted by the following 
equations: 

ρn =
∑Nb

m=1

(
m− 1.25 + 0.25

)
∗
(
r(m)n

)2 (8) 

After that, target can be identified by the following equations: 

τt = argmaxρn
n (9)  

2.8. Performance evaluation 

In order to evaluate the performance of high-speed BCI, classification 
accuracy and ITR were used as evaluation indexes in this study, which 
have been widely used in BCI research (Wolpaw et al., 2000). The ITR 
can be calculated as follows: 

ITR = log2N+Plog2P+(1 − P)log2((1 − P)/(N − 1)) (10)  

where N is the number of instruction sets, P is the classification accuracy 
and T is consuming time for each selection. For example, in this study, 
when ISI = − 150 ms, the consuming time of T was 1.1 s, 1.7 s, 2.3 s, 
2.9 s, and 3.5 s for 1–5 rounds, respectively. 

3. Results 

3.1. Impact on the hybrid P300-SSVEP BCI performance 

As described above, there were three methods for the target 

character recognition. The results were as follows. Figs. 4 and 5 showed 
the averaged accuracies and ITRs of the target character recognition 
across all subjects using three methods. Three-way repeated measures 
ANOVA showed that significant main effect of methods (F(2, 22)=
67.75, p < 0.001), ISI conditions (F(7, 77)= 67.49, p < 0.001), and the 
number of rounds (F(4, 44)= 138.99, p < 0.001) in accuracy. By post- 
hoc pairwise comparison using paired t-test, the hybrid features ach
ieved the highest accuracy regardless of ISI conditions or the number of 
rounds, which outperformed than single SSVEP (t11 =7.85, p < 0.001) 
and SSVEP+P300 features (t11 =11.48, p < 0.001). The tendency of 
classification accuracy was consistent to that of ITR. Three-way repeated 
measures ANOVA also showed that significant main effect of methods (F 
(2, 22)= 77.92, p < 0.001), ISI conditions (F(7, 77)= 58.96, p < 0.001), 
and the number of rounds (F(4, 44)= 13.56, p < 0.001) in ITR. Simi
larly, the hybrid features achieved the highest ITR regardless of ISI 
conditions or the number of rounds, which was superior to single SSVEP 
(t11 =10.27, p < 0.001) and SSVEP+P300 features (t11 =11.95, 
p < 0.001). 

In addition, the effect of ISI on BCI performance using the hybrid 
features was also analyzed. According to post-hoc pairwise comparison 
after two-way repeated measures ANOVA (i.e. ISI factor and the number 
of round factor), the accuracy of ISI= − 150 ms or − 175 ms were sig
nificant lower than that of the other 6 ISI conditions (all p < 0.05). Thus, 
the ISI= − 125 ms was a turning point, after which the accuracy was 
declined. Notably, because the accuracy increased with the number of 
rounds, it can still meet the requirements of practical applications. For 
ITR, the ITR was rising gradually as the ISI decreased. Moreover, there 
was a significant difference between any pair of 8 ISI conditions (all 
p < 0.05) except the pair of ISI= − 125 ms and ISI = − 150 ms (t11 
=2.11, p = 0.06). Therefore, considering accuracy and ITR for hybrid 
features, the setting of ISI was recommended to set as − 175 ms (i.e. 
ROIS=75%) that achieved the highest ITR of 158.50 bits/min among 5 
rounds and all 8 ISI conditions. 

3.2. Impact on P300 features 

The change of ISI affected the hybrid P300-SSVEP BCI performance. 
There are many reasons, such as adjacent interference, the amplitude of 
the induced features as well as data overlap between adjacent trials, and 
so on. However, it remained unclear how these previous factors would 
influence the concurrent P300 and SSVEP features. Here, we first 
analyzed the impact on P300 features including time-modulated P300 
and frequency-phase-modulated P300. 

Fig. 6 shows the grand average time-modulated ERP at electrode Cz, 
Pz, and Oz across all subjects and all sub-speller, which were filtered by 
a band-pass between 1 and 10 Hz. Obviously, P300 was induced be
tween 200 ms and 300 ms after the stimulus onset and amplitudes were 
different among 8 ISI conditions. To further compare the amplitude of 
P300, the time window of [0.190 s, 0.325 s] after stimulus onset was 
selected to calculated for each ISI conditions at Cz and Pz, as shown in  
Table 1. P300 amplitudes changed slightly until ISI= − 150 ms. Two- 
way repeated measures ANOVA indicated there was a significant dif
ference for ISI factors (F(7, 77)= 8.78, p < 0.001), not for electrode 
factors (F(1, 11)= 1.05, p = 0.33). According to post-hoc comparison 
using paired-t test, the P300 amplitude of ISI= − 150 ms was signifi
cantly lower than that of other ISI conditions (all p < 0.05) except 
ISI= − 75 ms(t11 =0.53, p = 0.605), ISI= − 100 ms(t11 =1.89, 
p = 0.09), and ISI= − 125 ms (t11 =1.11, p = 0.29). Moreover, 
ISI= − 175 ms achieved the lowest P300 amplitude, which was signifi
cantly inferior than the other 7 ISI conditions (all p < 0.01). The main 
reason is that the change of ISI affected the target-to-target interval 
(TTI), which leaded to the change of P300 amplitude(Luck, 2014; Jin 
et al., 2014). 

Fig. 7(a) shows transient ERP of different sub-spellers. The sub- 
spellers had a variety of P300 at electrode Cz and Pz. Furthermore, 
P100 at Oz was also different among sub-spellers. Specially, sub-speller 

J. Han et al.                                                                                                                                                                                                                                      



Journal of Neuroscience Methods 372 (2022) 109535

6

Fig. 4. The averaged accuracy of target character across all subjects were presented from (a) 1 round to (e) 5 rounds with three recognition methods. The error bar 
indicated standard errors. 

Fig. 5. The averaged ITRs corresponding to accuracy across all subjects were presented from (a) 1 round to (e) 5 rounds with three recognition methods. The error 
bar indicated standard errors. 
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1 had the largest P300 amplitude while sub-speller 2 had the lowest one. 
And sub-speller 6 had the largest P100 while sub-speller 3 had the lowest 
one. The variability of transient ERP might be caused by the non-linear 
phase resetting of neural oscillations, which is sensitive to the initial 
conditions of background EEG (Xu et al., 2016; Xu et al., 2016; Xu et al., 
2013). Fig. 7(b) showed the transient ERPs of 8 ISI conditions for 
sub-speller 1. The sub-spellers had different N100 and P300 potentials 
recorded at Cz and Pz. Moreover, P100 potentials at Oz were different 
among ISI conditions. Specially, ISI= − 50 ms had the largest P300 while 
ISI= − 175 ms had the lowest one. It’s consistent with previous study 
(Luck, 2014). ISI= − 25 ms had the largest P100 while ISI= − 150 ms 
had the lowest one. This also indicated that as the ISI decreases, the 
P300 potentials decrease gradually and other components of ERP also 
make a difference. 

Fig. 6. Grand average waveforms of ERP at electrode Cz, Pz, and Oz were presented among eight ISI conditions across all subjects and all sub-spellers. The band-pass 
filter was set to [1 Hz, 10 Hz] to remove the SSVEP influence. The waveforms were obtained by subtracting the non-target waveforms from the target waveforms. 
And the baseline of each ISI conditions was corrected according to the data of [− 0.2 s, 0 s] before the onset of stimulation. The gray blocks presented the time 
window used to calculate P300 amplitude. 

Table 1 
P300 amplitudes averaged across all subjects.  

ISI (ms) Cz (μV) Pz (μV) 

0  2.21  2.01 
-25  2.23  1.97 
-50  2.23  1.92 
-75  1.78  1.49 
-100  2.08  1.70 
-125  1.87  1.46 
-150  1.34  1.19 
-175  0.35  0.27  

Fig. 7. (a) ERP variations of different sub-spellers for ISI= 0 ms averaged across all subjects were presented at electrode Cz (left), Pz (middle), and Oz (right). The 
band-pass filter was set to [1 Hz, 10 Hz]. (b) The transient ERPs of different ISI conditions for sub-speller 1 were displayed at electrode Cz (left), Pz (middle), and Oz 
(right). The band-pass filter was set to [1 Hz, 10 Hz]. 
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3.3. Impact on SSVEP features 

In this section, we further analyzed the impact on SSVEP features 
including time-modulated SSVEP and frequency-phase-modulated 
SSVEP. 

Fig. 8 showed the fundamental SSVEP waveforms at electrode Oz 
averaged across all subjects. For frequency-phase-modulated SSVEP 
feature (see Fig. 8a), taking the sub-speller 2 as an example, the SSVEP 
feature was induced successfully and continued ~200 ms. Moreover, 
ISI= 0 ms achieved the highest amplitude while ISI= − 175 ms achieved 
the smallest amplitude. It could be seen that the SSVEP amplitudes were 
decreased with the decrease of the ISI, mainly due to adjacent inter
ference. For example, if ISI was equal to − 175 ms, there were at most 8 
characters flashing at a specific moment, whereas there were at most 1 
character flashing at a specific moment for ISI= 0 ms. This had a 
different effect on the induced features. The smaller the ISI value, the 
greater adjacent interference. In addition, the next cyclic stimulus 
response for ISI= − 175 ms appeared at ~0.5 s (see Fig. 8a), this is 
because the encoding time of one round is 0.4 s. Similarly, the same 
phenomenon occurred at ISI= − 150 ms that appeared at ~0.7 s 

For time-modulated SSVEP, Fig. 8b showed the averaged up enve
lopes of fundamental SSVEP across all sub-spellers and all subjects. First, 
the effective SSVEP response lasted ~0.2 s that ranged from ~0.1 s to 
~0.3 s, mainly depended on stimulus duration. And then SSVEP am
plitudes were gradually decreased with the decrease of ISI value. The 
reason is the adjacent interference analyzed above. These effects were 
important reasons for the differences in accuracy among 8 ISI 
conditions. 

4. Discussion 

4.1. Analyses of the reasons affecting BCI performance 

The change of ISI affected the hybrid BCI performance that had many 
reasons, such as adjacent interference, data overlap between adjacent 
trials, and so on. In general, adjacent interference refers to the fact that 
the surrounding stimuli interfere with subject’s attention, thereby 
inducing lower amplitude of features and leading to worse system per
formance. Some researchers carried out studies on this issue. Jin et al. 
proposed a new stimulus presentation pattern based on facial expression 
changes to reduce the adjacent interference, which achieved better 
performance than control experiment(Jin et al., 2014). In this study, 
adjacent interference also affected the induced features. Although sub
jects tried to focus on the target stimulus, the still could not avoid being 
affected by significant changes in the stimuli adjacent to the target 
stimulus(Jin et al., 2014). When the ISI value decreased, more 

non-target stimuli will be presented at the same time at a specific 
moment. For example, for ISI= − 175 ms, there are a total of 9 stimuli in 
a sub-speller, one of which is the target stimulus, and the remaining 8 
non-target stimuli are presented simultaneously during the experiment, 
which makes the subjects’ attention more likely to be distracted 
compared to the larger ISI value. As a result, for smaller ISI value, the 
amplitude of the induced features is lower whether it is SSVEP or P300 
features (see Figs. 6, 7, 8). 

Another important factor is data overlap between adjacent trials. The 
degree of data overlap between adjacent trials depended on the ISI 
value. Theoretically, the characters corresponding to adjacent trials 
become more and more inseparable as the degree of data overlap in
creases. Therefore, there are more data overlap between adjacent trials 
as the ISI decreases, which directly leads to false positives and affects 
system classification performance. In order to further analyze the impact 
on system recognition, the confusion matrixes averaged across all sub
jects of sub-speller 5 for ISI= 0 ms and − 175 ms were selected as ex
amples to explain, as shown in Fig. 9. The flashing pseudo-random 
sequence for sub-speller 5 was [8 3 7 2 9 5 1 6 4]. For the specified 
ISI, misclassification was more likely to occur in the category of non- 
target stimuli that were adjacent to the target stimulus. As shown in 
the Fig. 9(b), when the category of target stimulus was “5”, the predicted 
category was misclassified to “7” or “9”, which accounted for the largest 
proportion of the misclassified categories. In addition, the decrease of ISI 
value resulted in an increase in the proportion of misclassification. As 
shown in the Fig. 9(a)(b), the misclassification rate misidentified from 
“5” to “9” was 2% for ISI= 0 ms, while the value was increased to 17% 
for ISI= − 175 ms, which occupied in the largest proportion of the 
misclassified categories for “5” as target. Notably, the non-target stim
ulus that was adjacent to the target stimulus does not refer to whether it 
is adjacent in the flashing sequence, but whether the data overlaps be
tween the two trials. For example, if ISI was equal to − 175 ms, there 
were at most 8 characters flashing at a specific moment, and these 
corresponding trial data were overlapped. 

4.2. Application prospects of optimizing joint time-frequency encoding 
method 

The encoding method of P300-based BCI is time division multiple 
access (TDMA) that divides multiple targets into multiple time slots. 
Because of the characteristics of time encoding, an infinite number of 
commands BCI is theoretically achievable. But the system performance 
will be extremely slow and cannot meet actual application requirements. 
The encoding method of SSVEP-based BCI is frequency division multiple 
access (FDMA) that divides multiple targets into different frequency 
bands. It supports multiple targets appear simultaneously, so there is the 

Fig. 8. (a) The averaged fundamental SSVEP waveforms of sub-speller 2 (i.e. 12 Hz) at electrode Oz were presented among 8 ISI conditions across all subjects. (b) 
Grand average envelopes of fundamental SSVEP components at electrode Oz were displayed across all subjects and all sub-spellers. The envelope was calculated by 
Hilbert transform. The black vertical indicated stimulus onset. A band-pass filter from 10 Hz to 18 Hz was adopted to remove the influence of the transient ERP. 
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advantage of fast speed, but the available frequency band is relatively 
narrow resulting in a limited number of commands. The hybrid BCI used 
time-frequency joint coding method can combine the advantages of two 
encoding methods and make up for the shortcomings of two encoding 
methods, which has been preliminarily proven to achieved better per
formance (Panicker et al., 2011; Yin et al., 2014; Wang et al., 2015). On 
this basis, we further proposed the concurrent P300 and SSVEP features 
and implement a high-speed BCI speller system with over 100 in
structions covering full keyboard instructions by using the features. 
Nevertheless, the hybrid features are needed to be studied, which can 
further improve BCI performance. 

This study explored the effects of ISI on concurrent P300-SSVEP 
features to find the optimal setting for hybrid BCI. As a result, the 
hybrid features were achieved the best system performance regardless of 
ISI or the number of rounds, which was consistent with our previous 
study (Xu et al., 2020). It indicated that the hybrid features contains 
more useful information and is suggested to be used in hybrid BCI sys
tem in the further. Moreover, it has the advantage of strong robustness 
and is not susceptible to subject specificity. On the other hand, the re
sults showed that the change of ISI significantly affected system per
formance. According to the analysis in the result section, the setting of 
ISI was recommended to set to − 175 ms (i.e. ROIS=75%). Compared to 
the fixed value of ISI= − 100 ms we used in the previous study (Xu et al., 
2020), the ITR achieved 149.16 bits/min, 158.50 bits/min, 142.74 
bits/min, 129.16 bits/min, and 112.70 bits/min at 1–5 rounds using 
optimal settings, which have an improvement of 9.15%, 43.31%, 
62.57%, 85.10%, and 94.18% at 1–5 rounds, respectively. The marked 
increases provides a new way to design the high-speed BCI with more 
than 200 commands. 

5. Conclusion 

This study explored the effects of ISI on concurrent P300 and SSVEP 
features and the impact on the BCI performance. The results showed that 
the concurrent P300 and SSVEP features achieved the highest accuracy 
and ITRs regardless of ISI or the number of round. And ISI has an non- 
negligible impact on hybrid features and system performance. As the 
ISI decreased, the amplitudes of the induced features and accuracies 
were decreased gradually, while the ITRs were increased rapidly. It is 
suggested that ISI can be set to − 175 ms (ROIS=75%), which has an 
impressive improvement compared to previous study. This study has a 
guiding significance and a broad application prospect for high-speed BCI 

with a large commands. 
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