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ABSTRACT

Background: Recently, we have implemented a high-speed brain-computer interface (BCI) system with a large
instruction set using the concurrent P300 and steady-state visual evoked potential (SSVEP) features (also known
as hybrid features). However, it remains unclear how to select inter-stimulus interval (ISI) for the proposed BCI
system to balance the encoding efficiency and decoding performance.

New method: This study developed a 6 * 9 hybrid P300-SSVEP BCI system and investigated a series of ISIs ranged
from —175-0 ms with a step of 25 ms. The influence of ISI on the hybrid features was analyzed from several
aspects, including the amplitude of the induced features, classification accuracy, information transfer rate (ITR).
Twelve naive subjects were recruited for the experiment.

Results: The results showed the ISI factor had a significant impact on the hybrid features. Specifically, as the
values of ISI decreased, the amplitudes of the induced features and accuracies decreased gradually, while the
ITRs increased rapidly. It’s achieved the highest ITR of 158.50 bits/min when ISI equal to — 175 ms.
Comparison with Existing Method: The optimal ISI in this study achieved superior performance in comparison with
the one we used in the previous study.

Conclusions: The ISI can exert an important influence on the P300-SSVEP BCI system and its optimal value is —
175 ms in this study, which is significant for developing the high-speed BCI system with larger instruction sets in
the future.

1. Introduction

et al., 2008), and their hybrid features, have become increasingly pop-
ular paradigms (Panicker et al., 2011; Wang et al., 2015; Xu et al., 2014).

Brain-computer Interface (BCI) is a system by detecting central
nervous system activities and transforming it into manual output, which
can make the brain directly communicate with the external environment
(Wolpaw et al., 2000; Wolpaw et al., 2002; Feng et al., 2018; Wang et al.,
2020). The visual BCI (v-BCI) system is an application of visual pathway
in response to external stimuli that has the advantages of stable evoked
features and fast speed (Gao et al., 2014; Xu et al., 2021). The typical
features, such as P300 (Townsend and Platsko, 2016; Xiao et al., 2019),
steady-state visual evoked potential (SSVEP) (Wang et al., 2006; Wang

The large instruction set with high-speed has always been one of the
important development directions for BCI community. Researchers have
made a lot of efforts from two aspects, namely encoding strategy and
decoding algorithm (Xu et al., 2014; Xu et al., 2021). For encoding
strategy, Jin et al. designed an adaptive P300 BCI with 84 characters (Jin
et al.,, 2011). Townsend et al. realized a 72 characters BCI system by
designing a novel P300 checkerboard paradigm (CBP) (Townsend et al.,
2010). Xu et al. developed a novel 36 commands BCI speller with in-
formation transfer rate (ITR) of 63.33 bits/min by miniature

Abbreviations: BCI, brain-computer interface; SSVEP, steady-state visual evoked potential; ISI, inter-stimulus interval; ITR, information transfer rate; SOA,

stimulus onset asynchrony; SD, stimulus duration.
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event-related potentials (ERPs), which can significantly reduce visual
fatigue (Xu et al., 2018). Chen et al. implemented a 160 commands BCI
system with average ITR of 78.84 bits/min using multiple frequency
sequential coding (MFSC) method (Chen et al., 2021). For decoding
algorithm, Chen et al. proposed the filter-bank method and extended
CCA method successively to decode SSVEP BCI system with 40 com-
mands (Chen et al., 2015a; Chen et al., 2015b). Nakanishi et al. proposed
task-related component analysis (TRCA) that is the most powerful al-
gorithm for SSVEP-based BCI (Nakanishi et al., 2017). Chen et al.
developed a SSVEP-based BCI system used the dynamic window strategy
with average online ITR of 164.72 bits/min, whereas the number of
instruction was only 40 commands (Chen et al., 2021). The large in-
struction set BCI with high-speed had not been developed, mainly due to
mutual restriction between the number of instructions and the
consuming time of outputting a command. Its realization required
highly sophisticated encoding design and advanced decoding algorithm.
Recently, we have proposed the concurrent P300 and SSVEP features
(also known as hybrid features in the context) and implemented an over
100 commands BCI system covering full keyboard keys with a maximum
ITR of 238.41 bits/min (Xu et al., 2020). Nevertheless, the proposed BCI
system has room in encoding strategy for further improvement to better
meet the actual application.

The encoding performance of BCI was determined by encoding ef-
ficiency, which is mainly affected by three parameters: stimulus dura-
tion (SD), inter-stimulus interval (ISI), and stimulus onset asynchrony
(SOA), respectively (Allison and Pineda, 2006; Polprasert et al., 2013).
Actually, SOA is equal to SD plus ISI according to their definition. In
order to quantify the relative relationship between ISI and SD, we
defined the ratio of the opposite value of ISI to SD that was called as
ROIS. It’s worth noting that there is an overlap between the data cor-
responding to adjacent trials when ISI is negative value (i.e. ROIS is
positive value). And the larger opposite value of ISI (or larger ROIS
value), the more data overlap. From a view of pattern recognition, if the
degree of overlap is increased, the encoding time would be shorter and
the system response speed would be faster, but it would be brought
greater difficulties for feature extraction and recognition. The exact
impact on BCI system performance of ITR is not clear yet. If the degree of
overlap is decreased, feature recognition will become relative easier, but
the encoding time will be increased so that system performance of ITR
will be also changed. On the other hand, based on the study of ERP
(Luck, 2014; Martens et al., 2009), the changes of ISI or ROIS may have
an impact on the amplitudes of the induced features. For the proposed
hybrid features, besides the frequency-phase-modulated SSVEP and
time-modulated P300 features as contained in the traditional hybrid
P300 and SSVEP features, there are two new distinct EEG features, i.e.
time-modulated SSVEP and frequency-phase-modulated P300 (Xu et al.,
2020; Wang et al., 2016). More importantly, the effects of the encoding
parameters on the hybrid features and system performance are not clear
yet, which is one of the key issues to be explored urgently to enhance the
performance of high-speed BCI with a large instruction set.

This study aimed to explore the effects of ISI on the concurrent P300
and SSVEP features and the BCI system performance. We designed a 6 *
9 hybrid P300-SSVEP BCI system, whose SD was a fixed value of 200 ms
and ISI was a variable value ranged from 0 ms to — 175 ms with a step of
— 25 ms. Then the influence of ISI on P300 and SSVEP features was
studied separately from the several aspects of the amplitude of the
induced features, classification accuracy, ITR, and so on. The results
showed that the hybrid features achieved the best performance
compared to traditional SSVEP or SSVEP+P300 features. And the ISI
have a significant impact on hybrid features. Finally, it’s achieved the
highest ITR of 158.50 bits/min when ISI equal to — 175 ms, which is the
optimal and recommended setting. For the same BCI paradigm design,
the ITRs in this study have an impressive improvement using optimal
parameter setting, which provides an effective way for developing high-
speed BCI with larger instruction sets and broaden application
prospects.
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2. Materials and methods
2.1. Subjects

Twelve healthy volunteers (five females and seven males) aged be-
tween 20 and 21 with normal or corrected vision took part in the
experiment. According to the Helsinki Declaration, all subjects were
fully aware of all procedures, understood all possible consequences of
the study, and signed an informed consent form. The study was
approved by the Review Committee of Tianjin University. Before
participating in the experiment, all the subjects had not experienced the
relevant type of experimental training.

2.2. Hybrid P300-SSVEP BCI speller paradigm

The stimulation interface was presented on a 27-inch liquid crystal
display (LCD) with a resolution of 1920 * 1080 pixels and a refresh rate
of 120 Hz. A 6 * 9 matrix showed 54 black characters on a white
background, as shown in the Fig. 1a. They were further divided into 6
independent small 3 * 3 character matrices, which were also named as
P300 sub-speller. This is because that the 9 characters in the sub-speller
were encoded by time division multiple access (TDMA) and were indi-
vidually highlighted by a gray square in a pseudo-random and ergodic
sequence. Each stimulation square subtended 3.33 degrees of visual
angle in the vertical direction and 3.33 degrees in the horizontal di-
rection. The stimulus duration for each character was 200 ms.

The 6 sub-spellers were activated simultaneously. A complete
traversal flashing of 54 characters is called as a round. The hybrid
encoding scheme was used in this study. For sub-spellers, frequency
division multiple access (FDMA) was adopted. In order to distinguish the
frequency band of SSVEP and P300, the flicking frequencies were
greater than 10 Hz and ranged from 11 Hz to 16 Hz with 1 Hz interval.
And the initial phase of the six sub-spellers was also different. According
to (Wang et al., 2016), SSVEPs with any stimulation phase for 40 fre-
quencies (ranging from 8 Hz to 15.8 Hz with step of 0.2 Hz), which
covered all the stimulation frequencies of this experiment, can be
simulated by a simulation method. Therefore, the initial phases were
optimized by a search of phase interval (from 0 to 2n with a step of
0.05n) of the JFPM method on a public SSVEP dataset using the simu-
lation method with a stimulus duration of 200 ms, resulting in a phase
interval of 0.35n between two neighboring frequencies (see Fig. 1b). For
more details, please refer to (Wang et al., 2016). The flicker stimulation
method uses the sine wave stimulation method, which presents the
stimulation by changing the gray-scale of the character flicker back-
ground. Thus, when the target they focused on was triggered, P300 and
SSVEP were induced simultaneously.

It’s worth noting that ISI was varied to explore the impact on BCI
performance. In this study, the value of ISI ranged from — 175-0 ms,
with an interval of 25 ms. To better evaluate the impact of ISI changes
on BCI performance, we defined the radio of the absolute value of ISI to
SD as evaluation parameter, which was written as ROIS. Thus, the ROIS
values were 87.5%, 75%, 62.5%, 50%, 37.5%, 25%, 12.5%, and 0%,
respectively. Taking ROIS equaled to 50% as an example, the overlap
time of adjacent stimuli was 100 ms (i.e. ISI=—100 ms). That is to say
100 ms after the last stimulus started flashing, the next stimulus would
start flashing. At most two stimuli were flashing at any one time, as
shown in Fig. 1c. Similarly, for Fig. 1d, when ROIS was equal to 75%,
that was ISI= —150 ms, at most four stimuli were flashing at a certain
moment. The stimulation program was developed under MATLAB
(MathWorks, Inc.) using the Psychophysics Toolbox Version3.

2.3. BCI Experiment
The subjects were asked to sit calmly in front of the screen with their

eyes 60 cm away from the center of the screen. The specific experi-
mental process is shown in the Fig. 2. Taking ROIS equaled to 50% (i.e.
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Fig. 1. Illustration of the stimulation in the hybrid BCI speller. (a) Distribution of 54 characters on the screen was divided into 6 sub-spellers by the red line. (b) The
selected frequency and initial phase of stimulation squares were displayed for each sub-speller. (c, d) Stimulation process for sub-speller 1, ISI = —100 ms, — 150 ms.
Notably, the consuming time of one round was different for ISI= —100 ms and ISI= —150 ms, which was 1000 ms and 600 ms, respectively. The red dotted lines with

arrows indicate specific time points.

Fig. 2. Experimental flow diagram. The subjects pressed the space key to start the experiment. First the prompt interface appeared for 0.5 s, the stimulation interface
began flickering for 5 rounds. After that, the prompt for the next target character would begin.

ISI=—100 ms) as an example, the subjects pressed the space key when
they were ready. First of all, a prompt interface were presented on the
screen and lasted for 0.5 s. The specified character, which indicated by
an underneath read triangle with 1.85 degrees of visual angle for 0.5 s
on the prompt interface, was stared by the subjects and also called as the
target character. And then the stimulation phase would be began after

that. The visual stimulus ran for five successive rounds for all the
characters. Each character flashed for a period of time was called a trial.
So, each round consisted of nine trials, of which one was target stimulus,
and the other eight were non-target stimuli. The nine characters of each
sub-speller were numbered 1-9 from left to right and top to bottom. The
sequence of numbers indicated the flashing sequence of the characters.
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During the stimulation phase, the subjects were asked to focus on the
target character indicated beforehand and count the numbers of times
the target was highlighted. All subjects were required to spell all 54
characters for each ISI. In order to reduce the visual fatigue of the
subjects, 54 characters under each ISI were randomly and uniformly
divided into three sessions. Under each session, the subjects had to spell
18 characters, which were evenly distributed among the six sub-spellers.
In the course of the experiment, for each subject, the order of ISI se-
lection was random, and the subjects had to complete 8 groups of ISI
experiments. After completing the experiment of each two groups of ISI,
the subjects would take a short rest. The whole experiment took about
43 min.

2.4. EEG recording

The EEG data of 64 electrodes were collected by Neuroscan Syn-
amps2 system according to the international 10-20 system. The refer-
ence electrode was placed on the left mastoid and the ground electrode
was placed on the prefrontal lobe. The signals collected by 1000 Hz were
stored on the computer after 0.1-200 Hz bandpass filtering and 50 Hz
notch filtering.

2.5. EEG processing and feature extraction

As mentioned above, the concurrent P300 and SSVEP features (i.e.
hybrid features) are composed of four features, namely frequency-phase-
modulated SSVEP and time-modulated P300 features as contained in the
traditional hybrid P300 and SSVEP features, and the newly proposed
time-modulated SSVEP and frequency-phase-modulated P300 features.
According to previous studies (Panicker et al., 2011; Chen et al., 2015b;
Xu et al., 2020; Wang et al., 2016), P300 features (i.e. time-modulated
and frequency-phase-modulated) are mainly concentrated in the low
frequency  band (< 10Hz), while SSVEP features (i.e.
frequency-phase-modulated and time-modulated) are distributed in a
wider frequency band, and the starting position of the band is deter-
mined by the stimulus frequency. Therefore, in this study, stimulation
frequencies greater than 10 Hz were adopted so that P300 and SSVEP
features could be separated by filters with different bandpass to better
analysis.

The signal processing included two parts, i.e. pre-processing and
pattern recognition, as shown in Fig. 3. In the pre-processing stage, it
mainly includes data filtering, data segmentation, and down-sampling.
In the recognition process of the target character, there were two
sequential steps: (1) recognizing the sub-speller containing the target
character and then (2) recognizing the target character within the
identified sub-speller. It’s worth noting that P300 could only be used to
recognize the target character within the identified sub-speller, while
SSVEP and the hybrid features could be used to recognize both the sub-
speller containing the target character and the target character within
the identified sub-speller. Thus, combined with above features analysis,
there were three methods to recognize the target character. The first
method was to use only a single SSVEP features. Notably, only when
both sub-speller and the target character within the sub-speller are
recognized correctly, the output target class is correct, as shown in
Fig. 3, otherwise it is incorrect. The second method was to use SSVEP
features for sub-speller recognition and P300 features for the target
character within the identified sub-speller recognition. In other words,
SSVEP and P300 features were combined in a serial manner that was
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abbreviated as SSVEP+P300. The third method was to use the hybrid
features for the target character recognition. The corresponding specific
data processing flow of P300, SSVEP, and hybrid features are introduced
as follows, respectively.

For P300, 6 EEG channels (Fz, Cz, Pz, PO7, PO8, Oz) were down-
sampled to 200 Hz and filtered by the 1-10 Hz bandpass with Butter-
worth filters. Then the sampling rate was down to 20 Hz and the P300
feature was extracted from 50 to 800 ms.

For SSVEP, 9 EEG channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz,
02) were first down-sampled to 250 Hz and filtered by a filter bank
(including seven Chebyshev type I filters) into [X Hz,72 Hz] (X =9, 17,
25, 33, 41, 49 and 57). SSVEP features were extracted from 140 to
340 ms.

For the hybrid features, 11 EEG channels (Fz, Cz, Pz, PO7, PO3, POZ,
PO4, PO8, 01, Oz, and 0O2) were first down-sample to 250 Hz and
filtered by a filter bank (including seven Chebyshev type I filters) into [X
Hz,72 Hz] (X = 2,9, 17, 25, 33, 41, 49 and 57). The principle of channel
selection is based on the feature distribution in brain and fuses more
effective features. The hybrid features were extracted from 50 to 450 ms
according to our previous study (Xu et al., 2020).

2.6. Step-wise Linear Discriminant Analysis (SWLDA)

SWLDA developed on the basis of Fisher linear discriminant (FLD)
analysis is a classic and powerful algorithm for P300, which mainly
reduces the space occupied by features by gradually screening and
retaining significant features (Krusienski et al., 2006; Xiao et al., 2021).
SWLDA is implemented through forward and backward step-by-step
analysis. For the input features, the target label category is predicted
by using the ordinary least square method to weighted (equivalent to
FLD). Since the discriminant function does not contain the initial fea-
tures, the most statistically significant input features used to predict the
target label are added to the discriminant function. When a new feature
is entered into the discriminant function, a backward step-by-step
analysis is performed to remove the least important feature. The
above process is repeated until the discriminant function includes a
predetermined number of features or until no new features meet the
conditions for adding or removing.

2.7. Ensemble task-related component analysis (TRCA)

The Ensemble TRCA has been proved the most powerful recognition
algorithm for SSVEP classification (Nakanishi et al., 2017; Xing et al.,
2018). TRCA is an algorithm that finds projection matrix W=
w1 ... a)NC]T to maximize the covariance of task-related compo-
nents between trial (Tanaka et al., 2013). The h-th trial of EEG signal is
xM (t). The periods of x (t) are fixed as t € [ty,ty + T], where t, and T
refer to the beginning and the duration of the h-th trial, respectively. The
covariance between the h;-th and h,-th trials is as follow:

Nc
C’ll’lz = Z C()j]a)jzCOV(X}(’]>(I)7)§;;’Z)(I)) (1)

Jr2=1

Where N¢ is the number of the channels and Cov(a,b) refers to the
covariance between a and b. j indicates the indexes of the channels. All
possible combinations of trials are summed as:

Fig. 3. The total flow diagram of signal processing.
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Where N, is the number of training trials. Here, the matrix § = (S;,j, ),
1 <j1,j2 < N¢ is defined as:

N
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Considering obtaining a finite result, the following restriction should
be met:

N
Var(y(t) ) = Z Wj, Wj, Cov(x_,-l (l)vx./'z (l)) = WTQW =1 (4)

jlj2=1
Then, the optimization problem can be transformed as:
W= argmax(W'SW /W' QW) (5)

The optimal spatial filter is found as the eigenvector of the matrix
Q'S by Lagrange multiplier method. N; spatial filters corresponding to
Ny visual stimulus are integrated as follows:

W = [W;", WL , W;,.] 6)

Where m is the index of sub-bands designed by filter bank (m € [1,Ny)),
Nj, is the number of sub-bands. The correlation coefficient between the

projection of test data X(m) and averaged individual template x™ is
calculated as:

r£‘m) _ p((x(m) )Tw(m)7 (Y,,(m) )Y'W(m) ) )

Where p(a, b) indicates the Pearson’s correlation analysis between a and
b, n indicates the index of sub-spellers (ne¢[1,6]). Then correlation co-
efficients in different sub-bands are weighted by the following
equations:

Np

p=> (' 4025) 5 (1) ®

m=1
After that, target can be identified by the following equations:

T, = argmaxp,
n

9

2.8. Performance evaluation

In order to evaluate the performance of high-speed BCI, classification
accuracy and ITR were used as evaluation indexes in this study, which
have been widely used in BCI research (Wolpaw et al., 2000). The ITR
can be calculated as follows:

ITR = log,N + Plog,P+ (1 — P)log,((1 — P)/(N — 1)) (10)
where N is the number of instruction sets, P is the classification accuracy
and T is consuming time for each selection. For example, in this study,

when ISI = —150 ms, the consuming time of T was 1.1s, 1.7 s, 2.3 s,
2.9 s, and 3.5 s for 1-5 rounds, respectively.

3. Results
3.1. Impact on the hybrid P300-SSVEP BCI performance

As described above, there were three methods for the target
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character recognition. The results were as follows. Figs. 4 and 5 showed
the averaged accuracies and ITRs of the target character recognition
across all subjects using three methods. Three-way repeated measures
ANOVA showed that significant main effect of methods (F(2, 22)=
67.75, p < 0.001), ISI conditions (F(7, 77)= 67.49, p < 0.001), and the
number of rounds (F(4, 44)= 138.99, p < 0.001) in accuracy. By post-
hoc pairwise comparison using paired t-test, the hybrid features ach-
ieved the highest accuracy regardless of ISI conditions or the number of
rounds, which outperformed than single SSVEP (t;; =7.85, p < 0.001)
and SSVEP+P300 features (t;; =11.48, p < 0.001). The tendency of
classification accuracy was consistent to that of ITR. Three-way repeated
measures ANOVA also showed that significant main effect of methods (F
(2,22)=77.92, p < 0.001), ISI conditions (F(7, 77)= 58.96, p < 0.001),
and the number of rounds (F(4, 44)= 13.56, p < 0.001) in ITR. Simi-
larly, the hybrid features achieved the highest ITR regardless of ISI
conditions or the number of rounds, which was superior to single SSVEP
(t;7 =10.27, p <0.001) and SSVEP+P300 features (t;; =11.95,
p < 0.001).

In addition, the effect of ISI on BCI performance using the hybrid
features was also analyzed. According to post-hoc pairwise comparison
after two-way repeated measures ANOVA (i.e. ISI factor and the number
of round factor), the accuracy of ISI= —150 ms or — 175 ms were sig-
nificant lower than that of the other 6 ISI conditions (all p < 0.05). Thus,
the ISI= —125 ms was a turning point, after which the accuracy was
declined. Notably, because the accuracy increased with the number of
rounds, it can still meet the requirements of practical applications. For
ITR, the ITR was rising gradually as the ISI decreased. Moreover, there
was a significant difference between any pair of 8 ISI conditions (all
p < 0.05) except the pair of ISI= —125ms and ISI = —150 ms (t1;
=2.11, p = 0.06). Therefore, considering accuracy and ITR for hybrid
features, the setting of ISI was recommended to set as — 175 ms (i.e.
ROIS=75%) that achieved the highest ITR of 158.50 bits/min among 5
rounds and all 8 ISI conditions.

3.2. Impact on P300 features

The change of ISI affected the hybrid P300-SSVEP BCI performance.
There are many reasons, such as adjacent interference, the amplitude of
the induced features as well as data overlap between adjacent trials, and
so on. However, it remained unclear how these previous factors would
influence the concurrent P300 and SSVEP features. Here, we first
analyzed the impact on P300 features including time-modulated P300
and frequency-phase-modulated P300.

Fig. 6 shows the grand average time-modulated ERP at electrode Cz,
Pz, and Oz across all subjects and all sub-speller, which were filtered by
a band-pass between 1 and 10 Hz. Obviously, P300 was induced be-
tween 200 ms and 300 ms after the stimulus onset and amplitudes were
different among 8 ISI conditions. To further compare the amplitude of
P300, the time window of [0.190 s, 0.325 s] after stimulus onset was
selected to calculated for each ISI conditions at Cz and Pz, as shown in
Table 1. P300 amplitudes changed slightly until ISI= —150 ms. Two-
way repeated measures ANOVA indicated there was a significant dif-
ference for ISI factors (F(7, 77)= 8.78, p < 0.001), not for electrode
factors (F(1, 11)=1.05, p = 0.33). According to post-hoc comparison
using paired-t test, the P300 amplitude of ISI= —150 ms was signifi-
cantly lower than that of other ISI conditions (all p < 0.05) except
ISI= —75ms(t;; =0.53, p=0.605), ISI=—100ms(t;; =1.89,
p=0.09), and ISI=-125ms (t;; =1.11, p=0.29). Moreover,
ISI= —175 ms achieved the lowest P300 amplitude, which was signifi-
cantly inferior than the other 7 ISI conditions (all p < 0.01). The main
reason is that the change of ISI affected the target-to-target interval
(TTI), which leaded to the change of P300 amplitude(Luck, 2014; Jin
et al., 2014).

Fig. 7(a) shows transient ERP of different sub-spellers. The sub-
spellers had a variety of P300 at electrode Cz and Pz. Furthermore,
P100 at Oz was also different among sub-spellers. Specially, sub-speller
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Fig. 4. The averaged accuracy of target character across all subjects were presented from (a) 1 round to (e) 5 rounds with three recognition methods. The error bar
indicated standard errors.

Fig. 5. The averaged ITRs corresponding to accuracy across all subjects were presented from (a) 1 round to (e) 5 rounds with three recognition methods. The error
bar indicated standard errors.
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Fig. 6. Grand average waveforms of ERP at electrode Cz, Pz, and Oz were presented among eight ISI conditions across all subjects and all sub-spellers. The band-pass
filter was set to [1 Hz, 10 Hz] to remove the SSVEP influence. The waveforms were obtained by subtracting the non-target waveforms from the target waveforms.
And the baseline of each ISI conditions was corrected according to the data of [— 0.2's, 0 s] before the onset of stimulation. The gray blocks presented the time

window used to calculate P300 amplitude.

Table 1

P300 amplitudes averaged across all subjects.
ISI (ms) Cz (uV) Pz (pV)
0 2.21 2.01
-25 2.23 1.97
-50 2.23 1.92
-75 1.78 1.49
-100 2.08 1.70
-125 1.87 1.46
-150 1.34 1.19
-175 0.35 0.27

1 had the largest P300 amplitude while sub-speller 2 had the lowest one.
And sub-speller 6 had the largest P100 while sub-speller 3 had the lowest
one. The variability of transient ERP might be caused by the non-linear
phase resetting of neural oscillations, which is sensitive to the initial
conditions of background EEG (Xu et al., 2016; Xu et al., 2016; Xu et al.,
2013). Fig. 7(b) showed the transient ERPs of 8 ISI conditions for
sub-speller 1. The sub-spellers had different N100 and P300 potentials
recorded at Cz and Pz. Moreover, P100 potentials at Oz were different
among ISI conditions. Specially, ISI= —50 ms had the largest P300 while
ISI= —175 ms had the lowest one. It’s consistent with previous study
(Luck, 2014). ISI= —25 ms had the largest P100 while ISI= —150 ms
had the lowest one. This also indicated that as the ISI decreases, the
P300 potentials decrease gradually and other components of ERP also
make a difference.

Fig. 7. (a) ERP variations of different sub-spellers for ISI= 0 ms averaged across all subjects were presented at electrode Cz (left), Pz (middle), and Oz (right). The
band-pass filter was set to [1 Hz, 10 Hz]. (b) The transient ERPs of different ISI conditions for sub-speller 1 were displayed at electrode Cz (left), Pz (middle), and Oz

(right). The band-pass filter was set to [1 Hz, 10 Hz].
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3.3. Impact on SSVEP features

In this section, we further analyzed the impact on SSVEP features
including time-modulated SSVEP and frequency-phase-modulated
SSVEP.

Fig. 8 showed the fundamental SSVEP waveforms at electrode Oz
averaged across all subjects. For frequency-phase-modulated SSVEP
feature (see Fig. 8a), taking the sub-speller 2 as an example, the SSVEP
feature was induced successfully and continued ~200 ms. Moreover,
ISI= 0 ms achieved the highest amplitude while ISI= —175 ms achieved
the smallest amplitude. It could be seen that the SSVEP amplitudes were
decreased with the decrease of the ISI, mainly due to adjacent inter-
ference. For example, if ISI was equal to — 175 ms, there were at most 8
characters flashing at a specific moment, whereas there were at most 1
character flashing at a specific moment for ISI= 0 ms. This had a
different effect on the induced features. The smaller the ISI value, the
greater adjacent interference. In addition, the next cyclic stimulus
response for ISI= —175 ms appeared at ~0.5s (see Fig. 8a), this is
because the encoding time of one round is 0.4 s. Similarly, the same
phenomenon occurred at ISI= —150 ms that appeared at ~0.7 s

For time-modulated SSVEP, Fig. 8b showed the averaged up enve-
lopes of fundamental SSVEP across all sub-spellers and all subjects. First,
the effective SSVEP response lasted ~0.2 s that ranged from ~0.1 s to
~0.3 s, mainly depended on stimulus duration. And then SSVEP am-
plitudes were gradually decreased with the decrease of ISI value. The
reason is the adjacent interference analyzed above. These effects were
important reasons for the differences in accuracy among 8 ISI
conditions.

4. Discussion
4.1. Analyses of the reasons affecting BCI performance

The change of ISI affected the hybrid BCI performance that had many
reasons, such as adjacent interference, data overlap between adjacent
trials, and so on. In general, adjacent interference refers to the fact that
the surrounding stimuli interfere with subject’s attention, thereby
inducing lower amplitude of features and leading to worse system per-
formance. Some researchers carried out studies on this issue. Jin et al.
proposed a new stimulus presentation pattern based on facial expression
changes to reduce the adjacent interference, which achieved better
performance than control experiment(Jin et al., 2014). In this study,
adjacent interference also affected the induced features. Although sub-
jects tried to focus on the target stimulus, the still could not avoid being
affected by significant changes in the stimuli adjacent to the target
stimulus(Jin et al., 2014). When the ISI value decreased, more
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non-target stimuli will be presented at the same time at a specific
moment. For example, for ISI= —175 ms, there are a total of 9 stimuli in
a sub-speller, one of which is the target stimulus, and the remaining 8
non-target stimuli are presented simultaneously during the experiment,
which makes the subjects’ attention more likely to be distracted
compared to the larger ISI value. As a result, for smaller ISI value, the
amplitude of the induced features is lower whether it is SSVEP or P300
features (see Figs. 6, 7, 8).

Another important factor is data overlap between adjacent trials. The
degree of data overlap between adjacent trials depended on the ISI
value. Theoretically, the characters corresponding to adjacent trials
become more and more inseparable as the degree of data overlap in-
creases. Therefore, there are more data overlap between adjacent trials
as the ISI decreases, which directly leads to false positives and affects
system classification performance. In order to further analyze the impact
on system recognition, the confusion matrixes averaged across all sub-
jects of sub-speller 5 for ISI= 0 ms and — 175 ms were selected as ex-
amples to explain, as shown in Fig. 9. The flashing pseudo-random
sequence for sub-speller 5 was [8 37 2 9 51 6 4]. For the specified
ISI, misclassification was more likely to occur in the category of non-
target stimuli that were adjacent to the target stimulus. As shown in
the Fig. 9(b), when the category of target stimulus was “5”, the predicted
category was misclassified to “7” or “9”, which accounted for the largest
proportion of the misclassified categories. In addition, the decrease of ISI
value resulted in an increase in the proportion of misclassification. As
shown in the Fig. 9(a)(b), the misclassification rate misidentified from
“5” to “9” was 2% for ISI= 0 ms, while the value was increased to 17%
for ISI= —175 ms, which occupied in the largest proportion of the
misclassified categories for “5” as target. Notably, the non-target stim-
ulus that was adjacent to the target stimulus does not refer to whether it
is adjacent in the flashing sequence, but whether the data overlaps be-
tween the two trials. For example, if ISI was equal to — 175 ms, there
were at most 8 characters flashing at a specific moment, and these
corresponding trial data were overlapped.

4.2. Application prospects of optimizing joint time-frequency encoding
method

The encoding method of P300-based BCI is time division multiple
access (TDMA) that divides multiple targets into multiple time slots.
Because of the characteristics of time encoding, an infinite number of
commands BCI is theoretically achievable. But the system performance
will be extremely slow and cannot meet actual application requirements.
The encoding method of SSVEP-based BCI is frequency division multiple
access (FDMA) that divides multiple targets into different frequency
bands. It supports multiple targets appear simultaneously, so there is the

Fig. 8. (a) The averaged fundamental SSVEP waveforms of sub-speller 2 (i.e. 12 Hz) at electrode Oz were presented among 8 ISI conditions across all subjects. (b)
Grand average envelopes of fundamental SSVEP components at electrode Oz were displayed across all subjects and all sub-spellers. The envelope was calculated by
Hilbert transform. The black vertical indicated stimulus onset. A band-pass filter from 10 Hz to 18 Hz was adopted to remove the influence of the transient ERP.
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Fig. 9. . (a) and (b) were the averaged confusion matrixes of sub-speller 5 for ISI= 0 ms and ISI= —175 ms across all subjects, respectively.

advantage of fast speed, but the available frequency band is relatively
narrow resulting in a limited number of commands. The hybrid BCI used
time-frequency joint coding method can combine the advantages of two
encoding methods and make up for the shortcomings of two encoding
methods, which has been preliminarily proven to achieved better per-
formance (Panicker et al., 2011; Yin et al., 2014; Wang et al., 2015). On
this basis, we further proposed the concurrent P300 and SSVEP features
and implement a high-speed BCI speller system with over 100 in-
structions covering full keyboard instructions by using the features.
Nevertheless, the hybrid features are needed to be studied, which can
further improve BCI performance.

This study explored the effects of ISI on concurrent P300-SSVEP
features to find the optimal setting for hybrid BCI. As a result, the
hybrid features were achieved the best system performance regardless of
ISI or the number of rounds, which was consistent with our previous
study (Xu et al., 2020). It indicated that the hybrid features contains
more useful information and is suggested to be used in hybrid BCI sys-
tem in the further. Moreover, it has the advantage of strong robustness
and is not susceptible to subject specificity. On the other hand, the re-
sults showed that the change of ISI significantly affected system per-
formance. According to the analysis in the result section, the setting of
ISI was recommended to set to — 175 ms (i.e. ROIS=75%). Compared to
the fixed value of ISI= —100 ms we used in the previous study (Xu et al.,
2020), the ITR achieved 149.16 bits/min, 158.50 bits/min, 142.74
bits/min, 129.16 bits/min, and 112.70 bits/min at 1-5 rounds using
optimal settings, which have an improvement of 9.15%, 43.31%,
62.57%, 85.10%, and 94.18% at 1-5 rounds, respectively. The marked
increases provides a new way to design the high-speed BCI with more
than 200 commands.

5. Conclusion

This study explored the effects of ISI on concurrent P300 and SSVEP
features and the impact on the BCI performance. The results showed that
the concurrent P300 and SSVEP features achieved the highest accuracy
and ITRs regardless of ISI or the number of round. And ISI has an non-
negligible impact on hybrid features and system performance. As the
ISI decreased, the amplitudes of the induced features and accuracies
were decreased gradually, while the ITRs were increased rapidly. It is
suggested that ISI can be set to — 175 ms (ROIS=75%), which has an
impressive improvement compared to previous study. This study has a
guiding significance and a broad application prospect for high-speed BCI

with a large commands.
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